Dans les Cahiers Pédagogiques, Rémi Brissiaud a publié cette semaine un article intitulé :
Maths : les fondements scientifiques de l’évaluation s’effondrent.
Il me semble important de le lire, ne serait-ce que pour pouvoir suivre l’actualité et comprendre ce qui se joue. L’article complet est ici.Une deuxième partie, à venir, portera sur l’articulation entre connaissances scientifiques et pédagogiques.
- “Les « nouvelles » évaluations CP-CE1 sont les premières à être qualifiées de « cognitives ». On comprend mal pourquoi une évaluation scolaire, dans sa forme classique, ne pourrait pas être également qualifiée ainsi. C’est pourquoi on soupçonne que l’emploi de l’adjectif « cognitif » renvoie à l’usage que ferait cette « nouvelle évaluation » de résultats issus des sciences cognitives. (…) Il y a ceux correspondant à une évaluation scolaire « classique » :(…) … et deux autres items qu’elle qualifie de « prédictifs », ce qui est évidemment plus précis que « cognitifs ». Ce sont ces derniers items qui font l’originalité de la nouvelle évaluation.”
- Rémi Brissiaud développe ensuite son point de vue sur le “sens des nombres” annoncé par Stanislas Dehaene : “La capacité de distinguer deux collections dès que leurs tailles sont suffisamment différentes est une compétence de bas niveau qui est effectivement largement partagée dans le règne du vivant : un grand nombre d’organismes sont génétiquement équipés afin de distinguer précocement un gros tas de nourriture d’un petit tas. C’est pourquoi la plupart des chercheurs en sciences cognitives font le choix de s’exprimer différemment de Stanislas Dehaene : ils parlent d’un « sens inné des ordres de grandeurs » (le mot anglais utilisé est magnitude) alors que lui choisit de parler d’un « sens inné des nombres » ou encore d’un « système inné de nombres approximatifs ». (…) Comme la notion de nombre naît de la comparaison des quantités, elle présuppose donc cette notion : il n’y a pas de conception possible des nombres sans celle préalable des quantités ! Or les quantités sont définies à une unité près et, donc, pour accéder aux nombres il faut procéder à une analyse des collections unité par unité. (…) Présentons un résultat qui invalide l’idée que les bébés disposeraient d’un « sens inné des nombres ». Les nourrissons de moins de trois jours différencient une collection de 10 points et une autre de 30 points, mais ils différencient aussi une collection de 25 points et une autre de 75 points… En fait, ils différencient de grandes collections qui sont dans un rapport de 1 à 3 (dans cette comparaison visuelle, c’est le rapport qui importe !). En revanche, des bébés bien plus âgés ne font pas la différence entre une collection de 2 et une de 6, c’est-à-dire de petites collections qui, elles aussi, sont dans un rapport de 1 à 3. Ce résultat est totalement contre-intuitif : les nourrissons réussissent avec de grandes collections ce que des bébés plus âgés échouent avec de petites collections ! Ceci plaide en faveur de l’hypothèse que le traitement inné des collections ne porte pas sur des quantités analysées unité par unité, mais sur des ordres de grandeur.”
- “Lorsqu’un chercheur reproche à Stanislas Dehaene sa façon de s’exprimer, il rétorque que pour qualifier les compétences innées des bébés, il n’utilise pas le mot « nombre » isolément parce qu’il lui accole le mot « approximatif ». Cependant, l’usage de l’expression « nombre approximatif » est surprenant parce que le propre du nombre est d’être défini exactement : 4 n’est ni 3, ni 5 ! (…) Ainsi, l’usage de l’expression « nombres approximatifs » pour qualifier les compétences innées des bébés crée une double confusion : un traitement non numérique, la comparaison des ordres de grandeur, est qualifié de numérique et un futur traitement numérique de haut niveau est désigné de la même manière qu’un traitement non numérique inné. En s’exprimant ainsi, Stanislas Dehaene ne rend pas service à l’école et aux enseignants.”
- La recherche “conduit à étudier le rôle de trois variables : 1°) Le sens inné des ordres de grandeur. Pour l’évaluer, ils utilisent une épreuve de comparaison de collections de points. Les auteurs de la recherche disent explicitement que cette partie de leur travail est un test de la théorie exposée par Stanislas Dehaene dans son ouvrage The Number Sensé. 2°) Le résultat à l’épreuve de comparaison que l’on trouve dans l’évaluation CP-CE1. 3°) Le résultat à un test d’intelligence non verbale, les matrices de Raven. Leur conclusion est sans appel : le sens inné des ordres de grandeur n’explique en rien les performances à l’épreuve dite de la ligne numérique. En revanche, les deux autres variables contribuent à la réussite de manières importantes et proches.”
- “L’interprétation donnée par Stanislas Dehaene de la réussite à l’épreuve dite de « la ligne numérique » est donc erronée ce qui, évidemment, laisse mal augurer des remédiations proposées aux élèves qui échoueraient.“
[…] de l’évaluation s’effondrent« , dont j’avais proposé une lecture ici. La deuxième partie est à lire là, en date du 20 […]