Les équations en main

Cela fait un moment que j’ai promis de décrire le dispositif de mon collègue, Gani Mohamed, que nous coanimons avec sa classe : il a 4h hebdomadaires avec une de ses classes et j’ai les heures quinzaine de groupe. Il vient coenseigner avec moi avec le premier groupe, et ensuite je reproduis sur le deuxième. Le thème, filé depuis le milieu du premier trimestre : la résolution d’équations.

Gani s’est appuyé sur un dispositif existant, à partir d’un article dont j’ai oublié la référence. Il article trois niveaux successifs.

Premier niveau : des constantes positives et des inconnues

Les pions bleus représentent chacun l’inconnue. Ls dés symbolisent le nombre d’unités (côté constates) ajouté. La balance ou la règle évoquent l’équilibre, matérialisent l’égalité.Tout de suite, cela a bien fonctionné. Mais j’avais un souci, de mon côté : utiliser le même dé pour représenter des nombres d’unités différents me gêne, associé au principe de la balance. Peut-être avec des dés tous sur la face 1 nous éviterons certains obstacles. Alors pour ma part j’ai remplacé les dés par des cubes de numération, qui en plus présentent l’avantage d’être clipsables et déclipsables, ce qui est particulièrement pratique lorsqu’il fait diviser : on peut facilement représenter la correspondance entre 1 seul pion et un certain nombre d’unités constantes.

A ce niveau, on induit bien l’effet des opérations sur chaque membre de l’égalité, la nécessité d’opérer les mêmes dans chaque membre, et le calcul mental est facilité. Je me suis approprié le dispositif pour mes classes, du coup, mais en associant tout de suite la représentation puis la modélisation. Gani, lui, a préféré continuer la manipulation et n’introduire la représentation avec les calculs qu’au troisième niveau. En revanche il a beaucoup plus insisté que moi sur la vérification, ce en quoi il a sans doute raison.

Deuxième niveau : des inconnu et l’opposé de l’inconnue

Les pions bleus, c’est x. Voici les pions blancs, qui représentent -x. Sur ses fiches à compléter, Gani les note “*”. Là encore, j’ai gardé ses idées, en nommant explicitement -x au lieu de “*” et en précisant bien qu’on quitte l’idée de la balance. Parce qu’ajouter un pions pour exprimer qu’on retire éventuellement quelque chose, c’est délicat. Mais à ce niveau, les élèves ont déjà bien modélisé et cela n’a pas posé de souci. Toutefois, j’ai vraiment expliqué aux élèves pourquoi je procédais ainsi et quelles limites je voyais, pour éviter de mauvaises représentations. La discussion qui s’est engagée entre nous a été très intéressante : les élèves ont compris quelles questions je me pose, et pourquoi. Je pense que cela les a aidé à éviter certaines confusions, en fait. Vive l’explicite !

Cette étape est essentielle pour comprendre que x+(-x)=0 et permet des tas de simplifications. Je n’avais pas compris comme elle est importante au départ. La suite m’a montré comme ce principe de manipulation est pertinente et efficace.

Tout est possible, car tout est relatif !

Nous voilà dans les négatifs pour les contantes. Cela met un peu de couleurs… Et ça marche bien ! Pour ma part ces manipulations n’ont été que projetées à la visualiseuse, réalisées par des élèves ou en “dictée à l’adulte”. Comme j’avais déjà modélisé plus tôt, ç’aurait été un peu artificiel je crois. C’est simplement dû à la progression différente que j’ai choisie. Mais pour des élèves qui ont besoin de voir, de manipuler, qui sont en difficulté ou ne parlent pas français, cela m’a vraiment permis de lever des blocages.

Le dispositif de manipulation n’est pas fluide dans tous les cas : pour représenter “x-2(-x+3)”, il faut poser du matériel en plus pour en enlever avant de commencer, et là ça devient vraiment compliqué. Mais je reste convaincue pour l’introduction : c’est plus simple et pratique, et plus efficace, que ce que je faisais auparavant.

Au final, Gani m’a permis de reconsidérer ma façon d’introduire les résolutions d’équations ; et la sienne a très bien fonctionné. Je suis juste trop impatiente de modélisation pour suivre ses pas, mais ses élèves sont très performants avec le matériel. Et j’adore ces échanges, qui me font avancer, et sont toujours tranquilles et constructifs. Que du bonheur.

Et la suite ?

Hé bien j’aimerais tester avec les Ulis de mon mari, en attendant de tester avec mes Ulis à moi l’année prochaine… J’ai vraiment envie de voir ce que cela permet, jusqu’où je pourrai aller. Mais avant, il faut que je lui en parle et qu’il soit d’accord pour aller aussi loin dans des compétences de cycle 4…

One comment

Leave a Reply